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Abstract
Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic
resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunopheno-
typically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency
of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed
transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene
expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of
hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression
programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature
CD34+CD1a−CD7− subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional
resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally
diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs
significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary
approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment
allocation and evaluation of therapeutic options.
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Introduction

Successful management of acute leukemia is underpinned
by accurate diagnostic classification, which provides a basis
for treatment allocation, risk stratification and implementa-
tion of targeted therapies [1]. Although knowledge of the
molecular landscape of leukemia has increased enormously
over the past decades, contemporary classification remains
heavily predicated on simple immunophenotypic resem-
blance to either myeloid or lymphoid normal hematopoietic
precursors [2]. While this system has historically been
successful, some leukemia categories provide specific
diagnostic and therapeutic challenges. The current World
Health Organization (WHO) classification [2] recognizes
acute leukemias of ambiguous lineage that either lack
lineage-specific markers (acute undifferentiated leukemias,
AUL) or express a mixture of myeloid and lymphoid anti-
gens (mixed phenotype acute leukemias, MPAL). There is
little consensus on the best treatment approaches for these
patients, and prognosis is usually poor [3–5].

This framework also poses difficulties for some cases of
T-acute lymphoblastic leukemia (T-ALL) and acute mye-
loid leukemia (AML). T-ALL can be subclassified by
immunogenotypic and phenotypic resemblance to either
immature/ early thymic precursor (ETP), early cortical or
late cortical normal T-progenitor equivalents [6, 7]. How-
ever, the genotypic and phenotypic heterogeneity of
immature T-ALLs mean that robust biological classification
of this group is not straightforward [8]. A subset of these
cases harbor mutations that are also commonly seen in
AML, suggesting that at least some immature T-ALLs may
arise from transformation of a bipotent lympho-myeloid
progenitor [9–13]. In addition, diagnostic distinction from
AML by immunophenotype is often not clear-cut, as
immature T-ALLs commonly express myeloid lineage-
associated markers [14]. Conversely, the most phenotypi-
cally immature AML subgroup, M0-AML, is also biologi-
cally heterogeneous and expresses lymphoid-associated
antigens such as CD7 or TdT in about 50% of cases [15].
Immature T-ALLs are frequently chemoresistant and
require intensive treatment [10, 14, 16], while M0-AML
cases have poor outcomes compared to other AML sub-
groups [17, 18], so it is clinically important to consider
whether improved classification of these cases might allow
better therapeutic choices.

Current leukemia classification also takes little account
of modern advances in understanding of human hemato-
poiesis, and the recognition of a diverse range of pluri- and
multipotent progenitors, as identified by transcriptional
signatures and functional assays [19]. In particular, tradi-
tional notions of an early lymphoid/myeloid dichotomy
have been undermined by the discovery of a multitude of
lymphoid committed cell types which retain myeloid

potential at different stages of differentiation: within
the phenotypic stem cell [20] or progenitor compartment
[21–25] and in the thymus [26, 27]. The relevance of these
cell types in the context of leukemia is only beginning to be
explored [22, 28].

Leukemic transcriptome profiling should help to
improve categorization, but traditional analytical approa-
ches have their shortcomings. T-ALL can be reproducibly
categorized according to a limited number of expression
signatures that correlate with the phenotype of differ-
entiation arrest [6, 29, 30]. Data may also be interrogated
by gene set enrichment analysis (GSEA), which has
revealed that immature/ETP-ALLs transcriptionally
resemble both normal hematopoietic stem cell (HSC) and
immature myeloid precursors [9]. However, these approa-
ches rely on comparisons of predefined sample groups,
neglect transcriptional heterogeneity of individual leuke-
mias in each group and cannot resolve relationships
between groups. These analyses therefore provide limited
information about the spectrum of differentiation arrest in
acute leukemia.

Evolutions in genomic analytical methods provide an
opportunity to refine leukemia classification. We have
analyzed a series of acute leukemias that comprised a high
proportion of immature T-ALLs and AMLs using several
complementary methods. Firstly, we show that hier-
archical clustering and dimensionality reduction approa-
ches consistently identify an AML-like subset of T-ALL.
To gain deeper insight into the spectrum of differentiation
arrest in these leukemias, we then used the novel Iterative
Clustering and Guide Gene Selection method (ICGS).
This technique, when applied to single-cell RNA-
sequencing data, has been shown to infer cellular states
from transcriptional data, identify modules of guide genes
that are specific to these cellular developmental states in
an unbiased, agnostic manner, and infer developmental
relationships between these states [31]. We show that
application of ICGS to global expression data identifies a
continuum of differentiation arrest, which includes a
group of myeloid/ T-lymphoid interface leukemias that
lack clear lineage identity, and which respond poorly to
AML treatment regimens.

Methods

Microarray data analysis

All computational analysis was performed in R (v.3.3.2 or
above) unless otherwise specified. Data were normalized
with normalize.quantiles function from the preprocessCore
v1.34.0 package and batch effects between 2 independent
arrays were corrected using the ComBat function (sva
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package). Hierarchical clustering was performed with the
hclust function with distance (1-Pearson correlation) and
complete clustering method. Principal Component

Analysis (PCA) was performed with prcomp function. Both
hierarchical clustering and PCA were performed on all
probes.
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ICGS

ICGS was performed with AltAnalyze software v.2.1.0
(http://www.altanalyze.org/) using HOPACH clustering,
with default settings for gene expression analysis options
(moderated t-test for group comparison and Benjamini
−Hochberg false discovery rate <0.05). The gene expres-
sion filtering option was set to 2. Cell cycle genes were
excluded using the most stringent parameter. From the Liu
et al. pediatric cohort [32], all samples were used, whereas
from the Chen et al. cohort [33] only adult samples (>18
years) were selected. Heatmap visualization of ICGS data
was performed in AltAnalyze.

Differential expression analysis

Differentially expressed genes were derived using the
limma package (lmFit function) for microarray and DESeq2
for RNA-Seq. Contrast matrices between selected groups
are listed in Supplementary Table S1. Genes were con-
sidered differentially expressed if Benjamini−Hochberg
false discovery rate (FDR) < 0.05. Gene ranking for Gene
Set Enrichment Analyis (GSEA) was performed according
to t-statistic for microarray data or Wald statistic for RNA-
seq data. For the thymic subpopulation dataset, most vari-
able genes across all populations were selected as the union
of all the probes differentially expressed between any two
populations (thymic HVGs, 8751 probes).

Pathway and gene set enrichment analysis

GSEA was performed with GSEA software (http://software.
broadinstitute.org/gsea/index.jsp) using the C2.all.v6.1

collection of genesets from MSigDB (http://software.broa
dinstitute.org/gsea/msigdb/index.jsp) or a collection of
custom genesets (Supplementary Table S1) derived from
datasets generated here or publicly available
[19, 23, 24, 34–36]. When specific genesets were derived
from published data, differential expression analysis was
performed as indicated above using the contrasts indicated
in Supplementary Table S1. Differentially expressed genes
were then ranked by t-statistic for microarray data or by
Wald statistic for RNA-seq data and the top 500 genes (or
all genes with FDR < 0.05 if <500 genes had FDR < 0.05)
were selected as genesets to be tested by GSEA. GSEA
outputs were either visualized with the EnrichmentMap
plugin (FDR Q-value cutoff 0.05) of Cytoscape (v.3.2.0), or
with heatmaps generated with Prism software (v.7).
ClueGO analysis was performed with the ClueGO plugin
(v.2.1.6) of Cytoscape (v.3.2.0), using the GO Term Fusion
option and otherwise default parameters.

Code pertaining to each analysis is available upon
request.

Results

Transcriptional profiling identifies an AML-like
subset of T-ALL

We performed transcriptional profiling of a series of 124 acute
T-lymphoid and myeloid leukemias (See Supplementary
Methods). In order to maximize our ability to detect shared
patterns of gene expression in immature leukemias, the study
cohort was intentionally skewed to include a higher proportion
of these cases than would be observed by chance. 26/48 T-
ALLs (54.2%) had an immature T-receptor immunogenotype
[37], comprising 9 IM0 (germline TR), 9 IMD (TRD rear-
rangement only) and 8 IMG (TRG and TRD rearranged but
absent or incomplete TRB rearrangement) leukemias. Simi-
larly, 28/76 AML samples (40.8%) were categorized as M0-
AML. Patient details are shown in Supplementary Table S2.

Unsupervised hierarchical clustering (HC) analysis of the
expression data revealed that T-ALL and AML samples
largely formed two distinct groups (HC cluster 1 and HC
cluster 2, Fig. 1a). Strikingly, 8/48 T-ALLs (16.7%, hen-
ceforth ‘AML-like T-ALL’) segregated in the AML cluster
in this unsupervised analysis, and clustered together when
HC was restricted to T-ALLs (Supplementary Fig. S1A).
When visualized by Principal Component Analysis (PCA),
T-ALL and AML samples were distributed differently along
the first principal component. Notably, T-ALL samples
clustering with AMLs by HC overlapped with AML sam-
ples (Supplementary Fig. 1B).

Not all of these AML-like T-ALLs exhibited immuno-
genotypic immaturity (6/8) or had an ETP-ALL

Fig. 1 Transcriptional profiling identifies AML-like T-ALLs that
are enriched for immature myeloid and thymic progenitor tran-
scriptional signatures. a Unsupervised hierarchical clustering (HC) of
the transcriptional profiles of 124 acute leukemias, comprising 48 T-
ALLs and 76 AMLs. A subset of T-ALL cases segregates with the
AML cluster. b GSEA analysis of pathways significantly enriched in
AML-like T-ALLs vs the rest of the T-ALL cohort. The MSigDB C2
collection of genesets was used and only selected genesets with FDR
< 0.05 are shown. NES normalized enrichment score. c Enrichment of
selected normal hematopoietic progenitor transcriptional signatures
derived from the indicated published datasets or our own analysis of
thymic subpopulations (gene-sets provided in Supplementary Table
S1) in AML-like T-ALLs by GSEA. NES normalized enrichment
score, crossed out boxes indicate gene-sets that are not significantly
enriched (FDR > 0.05). HSC hematopoietic stem cell, CMP common
myeloid progenitor, GMP granulocyte-monocyte progenitor, MEP
megakaryocytic-erythroid progenitor, MLP multi-lymphoid pro-
genitor, LMPP lymphoid-primed multipotent progenitor, MDCP
monocyte-dendritic cell progenitor, LMDP lymphoid-mono-dendritic
progenitor, ELP early lymphoid precursor. d 2D PCA map of umbi-
lical cord blood stem and progenitor populations and T-ALL gene
expression patterns [38]; distribution of AML-like T-ALLs (blue
squares) is significantly different to that of other T-ALLs (PC1: p=
0.003; PC2: p= 4.1 × 10–5 by two-sided t-test).
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immunophenotype (4/7 fully-phenotyped samples) [14],
indicating that AML-like transcription features are not
restricted to previously identified categories of less differ-
entiated T-ALLs.

AML-like T-ALLs are enriched for immature myeloid
and thymic progenitor transcriptional signatures

We next examined the transcriptional differences between
AML-like cases and the rest of the T-ALL cohort. 2274
genes (Supplementary Table S3) were significantly differ-
entially expressed between the groups (FDR < 0.05), with
1213 and 1061 respectively upregulated and downregulated
in AML-like T-ALLs. Pathway analysis revealed that
AML-like T-ALLs had elevated expression of genes
involved in cell cycle and mitochondrial, amino-acid and
pyruvate metabolism, and high levels of interferon-related
genes, MYC, HOXA, MEIS1 and GATA2 targets (Fig. 1b).
Gene-sets that were previously reported to be upregulated in
AML in independent datasets were also significantly over-
represented. In contrast, TCR, NOTCH1 and TNF signaling
were all downregulated.

We then sought to better characterize AML-like T-ALLs
similarity to normal stem and progenitor cells, firstly by
performing GSEA using normal umbilical cord blood
(UCB) hematopoietic progenitor transcriptional signatures
that we previously reported [38]. AML-like T-ALLs were
significantly enriched for megakaryocytic-erythroid pro-
genitor (MEP) and granulocyte-monocyte progenitor
(GMP), but not hematopoietic stem cells (HSC) signatures.
These leukemias were also enriched for a GMP signature
from an independent dataset [23], and resembled lymphoid-
mono-dendritic progenitors (LMDP) from an UCB-derived
humanized murine model of early lymphoid development
[24] (Fig. 1c). To confirm transcriptional similarity to
myeloid progenitors, we combined the gene expression of
the T-ALL samples with that of highly purified stem and
progenitor populations [38] on a 2D PCA map. Consistent
with the GSEA results, AML-like T-ALLs localized in the
HSPC differentiation space, near GMPs (Fig. 1d).

We then performed transcriptional profiling of six pheno-
typically defined T-lymphoid progenitor groups isolated from
a series of human thymuses (Supplementary Fig. S2A). The
genes most differentially expressed in each subpopulation
(Supplementary Fig. S2B and Supplementary Table S4) were
consistent with known T-lymphopoietic transcriptional pat-
terns. PCA also reflected this developmental progression
(Supplementary Fig. S2C), which was similar to an in-vitro
system of human thymocyte differentiation from UCB
CD34+ cells [39] (Supplementary Fig. S2D).

PCA identified 3 main clusters: a rare (Supplementary
Fig. S2A) ‘early’ thymic group comprising CD34+
CD1a−CD7− samples, a ‘middle’ thymic group comprising

CD34+CD1a−CD7+, CD34+CD1a+ and CD4+ISP
samples and a ‘late’ thymic group encompassing the
transcriptionally similar CD4+CD8+DP/TRLow and
CD4+CD8+DP/TRHigh samples. We derived specific gene
expression signatures for each of these clusters and used
these in GSEAs to assess the transcriptional similarity of
AML-like T-ALLs to normal thymocyte subsets. Strikingly,
AML-like T-ALLs were strongly positively enriched for
genes that were specifically expressed by the most immature
CD34+CD1a−CD7− thymic subpopulation (Fig. 1c). Of
note, this signature differed from an ETP transcriptional
profile that we previously reported, which was derived by
comparison to UCB stem and progenitor cells [38] (Sup-
plemental Fig. 2E–G). Conversely, when compared with the
rest of the T-ALL cohort, AML-like T-ALL samples were
negatively enriched for ‘late’ thymic discriminating genes
(Fig. 1c). Taken together, these results indicate that AML-
like T-ALLs share gene expression programs with both
UCB-derived myeloid-competent progenitors and the most
immature thymic precursors, which also retain myeloid
differentiation potential [27].

Iterative clustering and guide gene selection
analysis identifies a continuum of leukemic
differentiation arrest

We next sought to gain a deeper insight into the spectrum of
differentiation arrest in these acute leukemias, by using the
recently described ICGS method. This analysis employs
serial iterative clustering with pattern-specific guide genes
to define coherent transcriptional patterns between samples
and then groups these samples into cellular states that
recapitulate developmental trajectories [31].

To test the feasibility of applying this approach to leu-
kemic datasets, we initially used ICGS to analyze two
published series of adult [33] and pediatric [32] T-ALL. For
both cohorts, the ICGS algorithm unbiasedly identified
guide gene modules enriched for human stem and pro-
genitor cells (HSPCs, CD34+), myeloid cells and thymo-
cytes (Supplementary Fig. S3A and C and Supplementary
Table S5), and ordered the T-ALL samples in clusters along
a continuum of expression of these genes. Along this
spectrum, adult T-ALLs attributed to ICGS clusters with the
lowest expression of thymic-associated genes (Groups A
and B), but with high expression of HSPC and myeloid
genes, were enriched for the ETP-ALL immunophenotype
[10, 12–14]. For the pediatric cohort [32], ICGS ordering
recapitulated in an unsupervised manner the classification
the authors had derived linking mutations to thymic
developmental stages (Supplementary Fig. S3C and D). We
thus concluded that ICGS allows unbiased classification of
leukemic samples according to their stage of differentiation
arrest.
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We then used ICGS to analyze our patient cohort. ICGS
classified these leukemias into five developmental clusters
that were defined by the levels of expression of a limited

number of guide genes (Fig. 2a and Supplementary
Table S5) that again predominantly comprised transcripts
that discriminate hematopoietic cell types. The proportions
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of different leukemic phenotypes within each cluster are
shown in Fig. 2b. Cluster 1 was defined by high expression
of thymic- and lymphoid-related genes (e.g., TCF7, LCK,
BCL11B), and comprised T-ALL cases exclusively. Con-
versely, Clusters 4 and 5 were effectively restricted to AML
cases, with concentration of Core Binding Factor (CBF)-
AMLs in cluster 5. These clusters exhibited increased
expression of factors that define myeloid transcriptional
modules (e.g., MPO, CEBPE, CSF3R). The intermediate
Clusters 2 and 3 were characterized by heterogeneous guide
gene expression, and included one third of T-ALL cases
(16/48, 33.3%). Notably, the most immature M0 subtype
AMLs were predominantly found in these two clusters (24/
28, 85.7%), as compared with 14/48 (29.2%, p < 0.001 by
Fisher test) of non-M0-AML. Also, virtually all AML-like
T-ALL samples that were defined by HC (7/8, 87.5%) were
found in either Cluster 2 (n= 4) or 3 (n= 3). ICGS there-
fore provides a means of classifying leukemias along a
spectrum of hematopoietic ontogeny, which in our cohort
included a significant number of cases at the interface
between T-lymphoid and myeloid lineages. Broadly, these
‘interface’ acute leukemias (IAL) either showed no clear
evidence of mature T-lymphoid or mature myeloid identity
(Cluster 2), or had a partial HSPC/mature myeloid signature
(Cluster 3).

To test whether ICGS clustering patterns correlated with
mutational genotype, we performed targeted next genera-
tion sequencing (NGS) of the 79/124 cases (34 T-ALLs and
45 AMLs) where diagnostic material was available. NGS
panel details are shown in Supplementary Table S6, com-
prehensive results are in Supplementary Table S7, and all
mutations detected in ≥2 patients are shown in Fig. 2c. We
found that the spectrum of differentiation arrest defined by
ICGS correlated only partially with expected somatic
mutation patterns. For example, Cluster 1 was enriched both
for T-ALL type NOTCH pathway-activating mutations (p <
0.0001, all comparisons by Fisher test) and for mutations
that are more frequent in immature T-ALLs [9, 10, 40], e.g.,
SUZ12 (p= 0.004), WT1 (p= 0.0044) and IL7R/JAK/
STAT pathway members (p= 0.0364).

Similarly, interface clusters were enriched for alterations
in DNA methylating factors that are typical of less differ-
entiated leukemias [13, 41, 42], with DNMT3A, IDH1 and
IDH2 mutated T-ALLs being confined to cluster 2 (p=
0.0267), but PTEN mutations that normally segregate with
phenotypically mature leukemias [43] were significantly
more common in AML-like T-ALLs than in other T-ALL
cases (50% v 7.1%, p= 0.0287). Of note, RUNX1-mutated
AMLs were exclusive to interface clusters 2 and 3 (p=
0.0015).

ICGS identifies myeloid leukemias with early
lymphoid transcriptional signatures

Having found that ICGS permits classification of acute
leukemias along a spectrum of hematopoietic differentia-
tion, we went on to more precisely characterize the tran-
scriptional identity of individual clusters by GSEA.
Analysis of the two independent T-ALL cohorts [32, 33]
revealed that the least differentiated clusters were enriched
for transcriptional signatures from a series of immature
myeloid and lymphoid progenitor populations, in addition
to HSCs (Supplementary Fig. S3F).

Within our cohort, Cluster 1 T-ALLs were strongly
enriched for mid- and late-thymic expression profiles, and
negatively enriched for both early thymic and UCB HSC
and myeloid progenitor signatures. AMLs in Clusters 4 and
5 had broadly converse patterns of positive and negative
enrichment (Fig. 3a).

Transcriptional differences in IAL Clusters 2 and 3 were
less clear-cut. Cluster 2 IALs were enriched for both HSC
and a series of lymphoid progenitor signatures, including
MLP, LMDP, early B-cell progenitors, T-oriented CD127-
Early Lymphoid Precursors (ELPs) and CD34+
CD1a−CD7− early thymic cells (Fig. 3a). Cluster 3 IAL
cases were more likely to be enriched for myeloid profiles
(MEP, GMP and UCB-derived monocyte-dendritic cell
progenitors, MDCP), but also showed transcriptional
resemblance to several lymphoid subpopulations, including
LMDP and both early and mid-thymic signatures (Fig. 3a).

We considered whether this heterogeneity might be dri-
ven by differing transcriptional contributions of T-ALLs
and AMLs within each cluster. Further analysis of Cluster 2
revealed the surprising finding that while T-ALLs were
mostly negatively enriched for lymphoid signatures, AMLs
had expression patterns that resembled several lymphoid-
competent populations, including MLPs, T-oriented
CD127− and B-oriented CD127+ ELPs and early B-cell
progenitors (Fig. 3b). Similarly, Cluster 3 AMLs showed
significant enrichment for LMDP and mid-thymic sig-
natures, while T-ALLs in the same group were more likely
to resemble myeloid populations, including GMPs and
MDCPs (Fig. 3c). These data suggest that interface AMLs

Fig. 2 Iterative Clustering and Guide Gene Selection (ICGS)
analysis identifies a continuum of leukemic differentiation arrest.
a, b ICGS analysis of adult and pediatric T-ALLs (n= 48 samples)
and AMLs (n= 76 samples) identifies 5 acute leukemia clusters (top).
a Heatmap of expression of guide genes selected by ICGS. Columns
represent individual samples. Bars on the top identify ICGS clusters.
Rows represent genes, and bars on the side represent blocks of cor-
related genes. Selected enriched gene ontology groups are shown. Full
gene lists are provided in Supplementary Table S5. Leukemic phe-
notypes are indicated in the bars below the heatmap. b Proportions of
leukemic phenotypic groups in each ICGS cluster. c Mutations
observed in T-ALL (n= 34) and AML (n= 45) samples ordered
according to ICGS analysis in a. Only mutations found in at least two
samples are shown.
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Fig. 3 Transcriptional characterization of ICGS-defined clusters.
a–c: GSEAs using normal hematopoietic precursor transcriptional
signatures of (a) all clusters, (b) interface Cluster 2 and (c) interface
Cluster 3. Analyses restricted to either T-ALL, AML-like T-ALL, non-
M0-AML and M0-AML are shown. Crossed out boxes indicate gene-
sets that are not significantly enriched (FDR > 0.05). d Comparison of

expression of genes related to B-cell development in interface and non-
interface AMLs. e–f Enrichment of leukemic stem cell (LSC) [34] and
mixed phenotype acute leukemia (MPAL) [35, 36] transcriptional
signatures by GSEA of (e) all clusters, (f) interface Cluster 2 and
(g) interface Cluster 3. Analyses restricted to either T-ALL, AML-like
T-ALL, non-M0-AML and M0-AML are shown.
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demonstrate significant lymphoid orientation, which can be
more pronounced than the T-ALLs with which they co-
cluster by ICGS. Enrichment for B-lymphoid transcription
was particularly evident when expression of genes related to
B-cell development was compared in interface and non-
interface AMLs (Fig. 3d).

ICGS-defined interface AMLs transcriptionally
resemble mixed phenotype leukemia

Further GSEA revealed that interface Cluster 2 was sig-
nificantly enriched for a myeloid leukemic stem cell (LSC)
transcriptional signature [34], and that this enrichment was
shared by both T-ALLs and AMLs in this group (Fig. 3e, f).
AMLs in interface Cluster 3 (Fig. 3g), and AML-like T-
ALLs (NES= 1.92; FWER= 0.003) were also enriched for
the LSC signature, suggesting that expression of leukemia
stemness genes is a common feature of IAL cases.

As interface leukemias share expression profiles with a
range of progenitors of multipotent lineage capacity, we
next tested whether there was any transcriptional similarity
to MPALs of either T-lymphoid/myeloid (T/M MPAL) or
B-lymphoid/ myeloid (B/M MPAL) phenotype in children
[35] and adults [36]. We found that interface Clusters 2 and
3 were enriched for B/M MPAL and T/M MPAL signatures
respectively, and that enrichment was driven by the AML
cases in each group (Fig. 3f, g). Therefore, in keeping with
the results observed in normal progenitor comparisons,
transcriptional resemblance to the earliest stages of lym-
phoid orientation appears to be driven by interface AMLs
rather than T-ALLs.

Interface AMLs have poor outcomes

The fact that interface AMLs exhibit markedly different
transcription to other AML cases led us to speculate that
these leukemias may have specific biology which in turn
might affect clinical behavior. We therefore evaluated the
outcome of interface AMLs in two independent studies
[44, 45]. To identify these cases, we calculated an interface
AML (IAL) score based on gene expression differences
between interface and non-interface AMLs in our cohort
(Supplementary Methods and Supplementary Table S8).
Outcome analyses revealed that AMLs with high IAL
scores had significantly shorter survival in both studies
(Fig. 4a, b). Within the ALFA-1701 group, these effects
were mainly driven by significantly different outcomes
within the ELN Intermediate Risk subgroup (Supplemen-
tary Table S9). We also found that high IAL scores pre-
dicted lack of response to gemtuzumab ozogamicin
(Fig. 4c), which in keeping with our previous results [46],
correlated with reduced expression of CD33 in high IAL
score cases (Fig. 4d). Importantly, multivariate analysis of

the ALFA-0701 cohort [45] revealed that IAL score pre-
dicted outcome independently of other prognostic variables,
including cytogenetic classification, ELN subgroups and the
recently-described LSC17 score [34] (Table 1). Consistent
with this, our IAL signature had almost no overlap with the
LSC17 signature, or the extended 48 gene signature that
was reported in the same paper [34] (Supplementary
Fig. S4A and B). Full comparison of clinicobiological and
mutational profiles of ALFA-0701 patients with high and
low IAL scores is shown in Supplementary Table S10.
Finally, we evaluated whether high IAL score cases had
evidence of lymphoid transcriptional activation. In keeping
with our earlier results (Fig. 3), we found that high IAL
score cases in both AML cohorts were significantly enri-
ched for both MLP signatures and B-lymphoid gene
expression (Supplementary Fig. S4C–G).

Discussion

In keeping with modern concepts of a hematopoietic pro-
genitor framework that comprises a spectrum of differ-
entiation potential, integrated transcriptional analysis of
AMLs and T-ALLs revealed a continuum of leukemic
developmental arrest. While AMLs and T-ALLs at either
end of the spectrum were specifically enriched for the
transcriptional signatures of the corresponding lineage,
interface leukemias had evidence of both myeloid and
lymphoid precursor gene expression, with early lymphoid
signature enrichment being driven by interface AML cases.
Specifically, while interface Cluster 3 AMLs had T-
lymphoid transcriptional enrichment, interface Cluster 2
AMLs more closely resembled B-oriented lymphoid pre-
cursors including early B progenitors, MLPs and CD127+
ELPs [24, 38], and B/Myeloid MPAL [35, 36]. This cluster
comprised a high proportion of RUNX1-mutated M0-
AMLs, which have previously been reported to show B-cell
gene activation [47]. Overall, these results suggest that these
leukemias may be more likely to arise from lymphoid-
oriented progenitors and/or be arrested at an early stage of
lymphoid orientation (prior to CD19 expression) than is
currently recognized. It should also be noted that the high
proportion of IALs in this cohort reflects our deliberate
selection of high proportions of immature leukemias, which
exceed what is seen in routine clinical practice.

ICGS clustering presented several important differences
with accepted methods of T-ALL categorization by phe-
notype, immunogenotype or mutational profile [9, 14, 37].
For example, the majority of immature T-ALLs defined by
TR rearrangement [37] (16/26, 61.5%) or ETP-ALL phe-
notype (12/20, 60%) [14] were in Cluster 1, including those
with JAK-STAT pathway mutations (Supplementary
Table S7). In addition, IALs had low percentages of WT1
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and SUZ12 mutations that are typical of ETP-ALLs [9, 10]
and positive enrichment for PTEN alterations that are more
frequent in mature T-ALLs [43, 48]. We also noted dif-
ferences in mutational cooccurrence in these groups. While
PHF6 mutations were always accompanied by NOTCH1
alterations in Cluster 1, 3/5 PHF6-mutated IALs (1/3 T-
ALL and 2/2 AML) were NOTCH1 wild-type. This pattern
was also reported in MPAL [35, 49], and suggests that the
leukemic phenotype of PHF6 mutation may correlate with
co-expression of other oncogenes, as shown for TLX3 [50].
Interestingly, PHF6 has been shown to regulate B/T lineage
plasticity, at least on a BCR-ABL leukemic background [51].

Interface AMLs were also not restricted to immunopheno-
typically immature M0 cases, since they included 29% of
non-M0 AMLs.

Our description of myeloid/T-lymphoid IALs provides
support for recent proposals to define acute myeloid/T-
lymphoblastic leukemia (AMTL) as a distinct diagnostic
entity [11], but our results also indicate that this group
comprises significant molecular and lineage heterogeneity,
particularly with regard to lymphoid gene expression. When
applied to independent studies, our IAL score identified
AMLs with similar enrichment for immature B-lymphoid
signatures as interface cases in our cohort. While the IAL

Fig. 4 Interface IALs have poor outcomes. a–c Survival compar-
isons of AMLs with high and low IAL scores in independent cohorts,
aMetzeler et al. [44] and b ALFA-1701 [45]. OS overall survival. EFS
event-free survival. Hazard ratios (HR) and 95% Confidence Intervals
for each event and p values as measured by a two tailed Welch t-test

are indicated. c Outcome comparisons according to IAL score and
treatment with gemtuzumab ozogamicin (GO) in the ALFA-1701
cohort. d Comparison of CD33 expression in IAL High and Low cases
in the ALFA-1701 cohort. Boxes indicate median, interquartile range
and whiskers the 95 percentile.
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score was not designed to predict prognosis, it is striking
that these transcriptional patterns correlated with poor
response to AML treatment regimens. RUNX1-mutated
AML-M0 cases in our cohort showed B-lymphoid identity,
which is consistent with previous reports [47]. Intriguingly,
RUNX1-mutated AMLs have recently been shown to be
sensitive to glucocorticoids [52], which form the backbone
of ALL induction treatment. Our findings therefore suggest
that the poor response of these cases to AML therapy in
both adults [53] and children [54] might be improved by
better treatment allocation, and would plead against the
recent provisional classification of RUNX1-mutated AML-
M0 with AML [2]. Finally, we hope that these data will
provide further impetus to include these and other IALs in
shared myeloid/lymphoid protocols that might provide
better treatment options for patients with these poor-risk
leukemias [55].

Data availability

Gene expression data reported here is available at GEO as
superseries GSE131207 (normal thymic populations data-
set: GSE131180; AMLs/T-ALLs dataset: GSE131184).
Other experimental methods are described in the Supple-
mental Data.
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