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Abstract
Introduction  Glioblastoma (GBM)  is the most malignant primary brain cancer, 
associated with a median overall survival of 15 months. Traditional diagnosis and 
prognosis heavily rely on clinical examination and histological investigation, both 
of which are subjective and  time-consuming. advances in machine learning (ML) 
and deep learning (DL) have largely accelerated the research of GBMs by enhancing 
tumour segmentation, molecular  characterization and survival prediction.

Methodology  We refer to the PRISMA guidelines to report this systematic review 
and meta-analysis. A total of  44 studies published from 2021 to 2025 were analyzed. 
We thoroughly searched the following sources: PubMed, Scopus  and Web of Science. 
Review-specific inclusion criteria included studies reporting on diagnostic, prognostic, 
or response-prediction tasks in GBM that used ML/DL  models and reports on 
quantitative performance metrics. The independent random-effects model estimated 
the performance of each clinical  task, and subgroup analysis determined the variables 
influencing model accuracy.

Results  The performance of the machine and deep learning  models was strong 
across different clinical tasks. For overall survival prognosis, the pooled C-index  was 
0.78 (95%CI 0.74–0.82, I2 = 68.5%). The tumor segmentation models had a high average 
Dice Similarity Coefficient value (0.91, 95% CI 0.87–0.94, I2 = 45.2%). Molecular tests 
were highly accurate for the prediction of IDH1  mutation (pooled accuracy = 90.5%, 
95% CI 88.1% to 92.8%) and MGMT methylation status (pooled accuracy = 97.8%, 
95% CI 96.4% to 99.1%). Transformer models excelled over CNN in segmentation, and 
radionics-based ML could  improve non-invasive molecular assessment.

Conclusion  Although AI techniques have demonstrated encouraging results in 
GBM studies for various clinical tasks,  substantial challenges still preclude efficient 
clinical applicability. These developments  can potentially improve medical practice 
with improved diagnosis, personalized treatment and fewer invasive procedures. 
Nevertheless, variation in data, weak external validation, and missing  prospective 
clinical studies warrant careful interpretation of these results.
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1  Introduction
With a median survival of approximately 15 months, glioblastoma (GBM) is the most 
aggressive and deadly primary brain tumor despite aggressive treatment modalities [1, 
2]. Diagnosis and prognosis traditionally rely on clinical evaluation and histological 
analysis, which are time-consuming and somewhat subjective [3]. The development of 
artificial intelligence (AI) and machine learning (ML) has transformed GBM research 
via automated, unbiased, and feasible means for tumor characterization, survival predic-
tion, and treatment planning [4–6]. To augment diagnostic precision and patient-spe-
cific treatment plans, these strategies take advantage of large-volume medical imaging, 
genetic data, and clinical data [7, 8]. Recent developments in deep learning (DL) have 
significantly enhanced the precision of molecular characterization and tumor segmenta-
tion, allowing for non-invasive detection of useful biomarkers such as MGMT methyla-
tion status and IDH1 mutation [9, 10]. Moreover, ML-based models have demonstrated 
potential for predicting treatment response and patient survival, opening doors to per-
sonalized medicine in neuro-oncology [11, 12]. Extensive use of AI-based approaches 
in GBM treatment is still hampered by data heterogeneity, model generalizability, and 
clinical validation [13, 14].

Contrary to the already available reviews that have reported on separate aspects of ML 
applications in neuro-oncology, this meta-analysis gives a comprehensive and up-to-date 
review of AI technologies in GBM therapy. Our review is unique in several innovations: 
inclusion of the latest transformer-based models that have been shown to outperform 
traditional CNNs; critical evaluation of multimodal data fusion techniques combin-
ing imaging, genomics, and clinical features; systematic quantification of performance 
metrics across ML/DL techniques; and specific focus on clinical translation hurdles and 
implementation systems. In addition, this is the first systematic review to consolidate 
research that applies federated learning methods to address data privacy concerns in 
GBM collaborative studies [13, 14].

This meta-analysis focuses on tumor segmentation, genetic profiling, treatment 
response, and survival prediction. It attempts to consolidate recent AI and ML applica-
tions in GBM studies. By combining current research outcomes, we hope to present an 
overall image of AI's influence on GBM diagnosis and prognosis while also commenting 
on current limitations and potential avenues for future research.

2  Methodology
2.1  Study design and search strategy

The current meta-analysis carefully followed the guidelines of PRISMA (Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses). A systematic literature 
search was conducted using the PubMed, Scopus, and Web of Science databases to 
retrieve relevant studies between 2021 and 2025. We limited our search to 2021–2025 to 
find the most recent developments in transformer-based frameworks, federated learn-
ing solutions, and multimodal AI integration in the GBM field. This is a new phase of 
AI after attention and megatron-sized models become common  in the field. Although 
we recognize the important work done by the previous BraTS challenges and radiogenic 
studies, such focused effort also permits us to investigate more current methods that are 
still based  on these efforts.
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The following keywords were searched: “glioblastoma,” “machine learning,” “deep 
learning,” “prognosis,” “diagnosis,” and “treatment response.”

2.2  Inclusion and exclusion criteria

Forty-four studies were included based on the following criteria: (i) studies utilizing 
ML or DL models for GBM diagnosis, prognosis, or prediction of treatment response, 
(ii) studies with quantitative performance measures such as accuracy, AUROC, or con-
cordance index, and (iii) studies with validation using independent datasets or cross-
validation techniques. Prospective (n = 7) and retrospective (n = 37) study designs were 
considered eligible. Excluded were invalidated studies with insufficient data or theoreti-
cal models and without practical application in the real world.

Prisma flowchart

2.3  Extraction and assessment of quality

The certainty of evidence in the included  studies was then evaluated using pertinent 
tools according to study design: the Prediction model Risk Of Bias Assessment Tool, 
or PROBAST for prognostic modeling studies, and the artificial intelligence predic-
tion model version of the Transparent Reporting of a multivariable prediction model 
for Individual Prediction or Diagnosis, or TRIPOD-AI checklist. Two reviewers inde-
pendently performed quality assessment (H.F.T., AB and M.Ben.) with Cohen's kappa to 
describe the level  of interreviewer agreement (κ = 0.82, indicating excellent agreement). 
Differences were resolved by discussion with a third reviewer (M.B.)

2.4  Statistical analysis

Statistical analysis was performed using  R software (version 4.2.1). Due to the hetero-
geneity of clinical tasks and performance metrics, three separate meta-analyses were 
conducted for the primary outcome(s): (1) Survival Prediction Models: random-effects 
meta-analysis of C-index, (2) Lesion  Segmentation Models: random-effects meta-
analysis of DSC, (3) Molecular Classification Models: random-effects meta-analysis of 
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accuracy and AUROC. Between-study variance (τ2) was estimated for  each meta-anal-
ysis using the DerSimonian and Laird method. Sensitivity analyses comprised the exclu-
sion of non-peer-reviewed studies (preprints and conference abstracts), leave-one-out 
analysis for  studies with influence, and subgroup analyses according to data sources.

2.5  Primary outcomes and performance metrics

The primary outcomes compared were survival prediction accuracy, segmentation per-
formance, molecular classification effectiveness, and reliability of treatment response 
prediction. Performance metrics like accuracy, AUROC, sensitivity, specificity, and con-
cordance index were derived to enable direct comparisons across various ML and DL 
models.

3  Results
3.1  ML for survival prediction

Several ML models were found to be predictive of GBM patient survival outcomes. One 
such example is the NGBoost, with an internally validated concordance index (C-index) 
and an externally validated concordance index of 0.801 and 0.725, respectively, indicat-
ing their capacity to predict survival [8, 15]. TabPFN was also a model that performed 
very well in individualized survival prediction with AUROCs of 0.836 at six months, 
0.78 at twelve months, and 0.732 at eighteen months, attesting to its validity [9, 16]. The 
use of multimodal data, e.g., imaging and genomic data, has significantly contributed to 
prediction accuracy. Studies have underscored the need for feature selection techniques 
and ensemble learning methods to fine-tune survival models to enhance interpretabil-
ity and clinical applicability [17, 18]. These ML-based survival prediction improvements 
allow for more precise risk stratification and personalized treatment options for GBM 
patients.

3.2  Meta-analysis of ML model performance

3.2.1  Survival prediction model

Eighteen studies providing concordance indices for survival prediction were selected. 
The summary C-index was 0.78 (95% CI 0.74–0.82) with significant heterogeneity 
(I2 = 68.5%, p < 0.01). Subgroup analyses indicated that multimodal (imaging + genomics) 
models achieved C-index = 0.81 (95% CI 0.76–0.85) vs C-index = 0.75 (95% CI 0.71–0.79) 
for imaging-only models. The pooled estimate was better in the sensitivity analysis of 
studies without peer-reviewing publication (C-index = 0.79, 95% CI 0.75–0.83, I2 = 61.2%) 
(Fig. 1).

3.2.2  Segmentation models of tumors

Twenty-two investigations with Dice Similarity Coefficients  were evaluated. The  sum-
mary DSC was 0.91 (95% CI 0.87–0.94) with moderate heterogeneity (I2 = 45.2%, 
p = 0.02). For the Transformer method, DSC = 0.93 (95% CI 0.90–0.96), and for the Con-
volutional Neural Networks method, DSC = 0.89  (95% CI 0.85–0.92) (Fig. 1).

3.2.3  Molecular classification models

For IDH1 mutation prediction, fifteen studies showed pooled accuracy of 90.5% (95% CI 
88.1–92.8%) with low heterogeneity (I2 = 28.4%, p = 0.15). For MGMT methylation status, 
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twelve studies demonstrated pooled accuracy of 97.8% (95% CI 96.4–99.1%) with mini-
mal heterogeneity (I2 = 15.6%, p = 0.28).

Heterogeneity was lowered in these analyses (I2 < 40%), indicating consistency across 
studies [19, 20] (Fig. 1).

3.3  Deep learning for tumor segmentation

Deep learning models have greatly surpassed traditional segmentation techniques 
regarding accuracy and trustworthiness. A study with a modified VGG-16 model for 
the segmentation of GBM demonstrated higher performance than traditional methods, 
with improved segmentation accuracy [21, 22]. PKMI-Net, yet another deep learning 
algorithm, worked exceptionally well in segmentation with Dice Similarity Coefficients 
(DSC) of 0.94 for gross tumor volume (GTV) and 0.95 for clinical target volume (CTV1), 
attesting to its effectiveness in detecting the edges of the tumor [17, 23]. Attention 
mechanisms and transformer-based architectures improved segmentation performance 
further by refining the model's ability to detect intricate tumor structures [24, 25]. These 
findings indicate that deep learning has the potential to become a central component 
in improving treatment planning accuracy and eliminating interobserver variation in 
tumor segmentation (Fig. 2).

Fig. 1  Forest Plot—Predictive Performance for Survival

 



Page 6 of 10Tbahriti et al. Discover Oncology         (2025) 16:1492 

3.4  Radiomics and ML for molecular characterization

Radiomics-ML models have been applied extensively to forecast influential molecular 
markers in GBM. A radionics study with combined C3D features resulted in 91.11% 
accuracy in predicting the status of IDH1 mutation, and these models are highly effec-
tive for non-invasive molecular characterization [18, 26]. Similarly, the MGMT meth-
ylation status was correctly predicted with a high rate of 99.13% using deep learning 
techniques, and this indicates the potential of using AI-based tools to substitute for the 
traditional biopsy-based molecular diagnosis [4, 11, 24]. Integrating radiomics features 
and clinical factors has improved predictive accuracy and led to a more comprehensive 
and accurate assessment of GBM molecular subtypes. The ability of AI to generate rich 
imaging biomarkers enhances precision medicine approaches by enabling personalized 
treatment plans according to tumor genetic profiles [19, 20] (Fig. 3).

3.5  ML for treatment response and tumor progression

ML models were also employed to predict treatment response and assess tumor pro-
gression. A decision tree model incorporating surgical, volumetric, and molecular data 
improved PFS prediction from 0.546 to 0.576 C-index, indicating improved predictive 
power [10, 25]. Additionally, tumor growth models using deep learning-based Fisher-
Kolmogorov equations have been utilized to link tumor growth parameters to survival 
outcomes, aiding treatment planning [27, 28]. Longitudinal imaging analysis has also 
been beneficial, allowing us to comprehend the response of tumors to various treatment 
protocols more effectively and assisting clinicians in modifying the therapeutic strategy 
accordingly [29, 30].

4  Discussion
4.1  Advancements in AI-driven GBM analysis

AI and ML have revolutionized GBM research with precise and automated models for diag-
nosis, prognosis, and treatment planning [26, 31–33]. Using deep learning and radiomics, 
the models objectively provide reproducible and effective tumor analysis with reduced 
reliance on manual evaluations and improved clinical decision-making [19, 29]. AI-driven 

Fig. 2  Bar Chart—Comparison of Dice Similarity Coefficients (DSC)
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approaches have demonstrated tremendous potential in enhancing survival predictions, 
accurately segmenting tumors, and identifying essential molecular markers (Fig. 4).

4.2  Challenges in model generalization and clinical adoption

Despite favorable results, the clinical application of ML models for GBM is plagued by 
several issues. One major issue is data heterogeneity between institutions, as the perfor-
mance of the models is impacted by variations in imaging protocols and patient cohorts 
[26, 30, 31, 34]. In addition, the lack of standard datasets and limited external valida-
tion render the generalizability of AI models difficult, thus making their translation to 

Fig. 4  Radar Chart—Performance Metrics of ML Models

 

Fig. 3  Heatmap—Accuracy of Molecular Characterization
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clinical practice arduous. Future work must focus on multi-institutional partnerships for 
developing robust and generalized AI frameworks that can be applied to diverse patient 
groups and imaging pathologies [35, 36].

4.3  The role of multimodal data integration

Combining different data modalities, such as radiomics, genomics, and histopathol-
ogy, has been highly encouraging in enhancing the performance of ML models. Imag-
ing biomarkers coupled with molecular and clinical data integration has been observed 
to improve predictive accuracy and support a more expansive understanding of GBM 
biology [19, 20, 37]. Still, combining them is challenging based on standardization issues 
in data and computational complexity. Further enhancements in artificial intelligence-
driven data fusion techniques must improve the model interpretability and enable indi-
vidualized treatment approaches.

4.4  Future directions and ethical considerations

The future of AI in GBM research is to develop explainable and interpretable AI mod-
els that are integratable with clinical workflows [38–41]. Transparency of AI decision-
making is necessary for clinician and regulatory agency trust. Ethical considerations, 
including patient confidentiality, data protection, and bias mitigation, must also be con-
sidered to facilitate responsible AI deployment in neuro-oncology [30, 32, 42]. Establish-
ing regulatory standards and validation procedures will be essential in bridging the gap 
between AI research and clinical use [43]. AI-based methods have tremendous potential 
for transforming GBM diagnosis, prognosis, and treatment planning. Overcoming cur-
rent challenges through large-scale collaborations, standardization, and ethical AI devel-
opment will be essential to fully realizing the potential of AI in neuro-oncology.

5  Conclusion
Machine learning and  deep learning methods have shown potential strengths in glio-
blastoma studies, especially in diagnosis, molecular typing, and survival prognosis. 
Such methods can  be considered adjunct tools to conventional clinical methods that 
are non-invasive and possibly time-effective. Nonetheless, several obstacles exist, such 
as data  heterogeneity, standardization, external validation, and lack of clinical integra-
tion. Future research should be devoted to creating explainable  and generalizable AI 
models, validating across heterogeneous populations, and incorporating multimodal 
data. Ethics, including data privacy, algorithmic  bias, and clear regulatory paths, will be 
important for responsible deployment. While the potential of AI application in neuro-
oncology is enormous, more evidence,  excellent cooperation, and strict verification are 
needed to translate it into daily.
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