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Abstract
T-lymphoblastic lymphoma (T-LBL) and thymoma are two rare primary tumors of the thymus deriving either from T-cell
precursors or from thymic epithelial cells, respectively. Some thymoma subtypes (AB, B1, and B2) display numerous
reactive terminal deoxynucleotidyl transferase-positive (TdT+) T-cell precursorsmasking epithelial tumor cells. Therefore,
the differential diagnosis between T-LBL and TdT+ T-lymphocyte-rich thymoma could be challenging, especially in the
case of needle biopsy. To distinguish between T-LBL and thymoma-associated lymphoid proliferations, we analyzed the
global DNA methylation using two different technologies, namely MeDIP array and EPIC array, in independent samples
series [17 T-LBLs compared with one TdT+ lymphocyte-rich thymoma (B1 subtype) and three normal thymi, and seven
lymphocyte-rich thymomas compared with 24 T-LBLs, respectively]. In unsupervised principal component analysis
(PCA), T-LBL and thymoma samples clustered separately. We identified differentially methylated regions (DMRs)
usingMeDIP-array and EPIC-array datasets and nine overlapping genes between the two datasets considering the top
100 DMRs including ZIC1, TSHZ2, CDC42BPB, RBM24, C10orf53, and MACROD2. In order to explore the DNA
methylation profiles in larger series, we defined a classifier based on these six differentially methylated gene
promoters, developed an MS-MLPA assay, and demonstrated a significant differential methylation between
thymomas (hypomethylated; n = 48) and T-LBLs (hypermethylated; n = 54) (methylation ratio median 0.03 versus
0.66, respectively; p < 0.0001), with MACROD2 methylation status the most discriminating. Using a machine
learning strategy, we built a prediction model trained with the EPIC-array dataset and defined a cumulative score
taking into account the weight of each feature. A score above or equal to 0.4 was predictive of T-LBL and conversely.
Applied to the MS-MLPA dataset, this prediction model accurately predicted diagnoses of T-LBL and thymoma.
© 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great
Britain and Ireland.
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Introduction

Thymic neoplasms are the most common primary
tumors of the anterior mediastinum. They mainly
include thymomas, thymic carcinomas, lymphomas
including T-lymphoblastic lymphomas (T-LBLs), and
germ cell tumors. Thymoma and T-LBL, two rare pri-
mary tumors, derive either from thymic epithelial cells or
from T-cell precursors, respectively. Thymomas are
subclassified into the histological subtypes A, AB, B1,
B2, and B3 according to the WHO classification [1].
AB, B1, and B2 subtypes display numerous non-tumoral
TdT+ T-lymphocytes that could mimic T-LBL morpho-
logically and phenotypically, and several articles have
reported the difficulty in distinguishing T-LBL from
TdT+ T-cell-rich thymoma [2,3]. Thus, correct diagnosis
can be challenging, especially when assessing a needle
biopsy. Usually, thymomas affect adult patients without
apparent gender predilection, around the fifth and sixth
decades, with a median age of 58 years [4,5] and
increasing incidence with age, but younger adults
and, in rare cases, children can be affected [1,6].
Thymomas are predominantly characterized by pro-
gression in the thymus. However, in a minority of
cases, they may invade the pleura, pericardium, lung,
and mediastinal lymph nodes, and although rare, dis-
tant extrathoracic metastases (lymph nodes, bone mar-
row, liver, etc.) can be observed [6]. Thymomas are
associated with paraneoplastic syndromes such as
myasthenia gravis, among others, in about 30% of
cases [1,6]. The standard treatment of thymoma is
based, depending on stage, on complete surgical re-
section in combination with post-operative radiother-
apy and/or chemotherapy in the case of advanced
thymomas [6]. In contrast, T-LBL occurs pre-
ferentially in young men, with a highly aggressive
clinical presentation combining a severe impairment
of well-being, mediastinal mass, pleural/pericardial
effusion, and frequent, but not systematic, dissemina-
tion (lymphadenopathy, bone marrow infiltration). In
T-LBL, neoplastic T-cell progenitors are clonal, as
demonstrated by clonal T-cell receptor (TR)
rearrangements. However, in at least 10% of T-LBL
cases, no clonal rearrangement can be identified [7,8].
Intensive acute lymphoblastic leukemia (ALL)-type
poly-chemotherapy is recommended for the treatment
of T-LBL. As the prognosis and the treatment differ
dramatically between T-LBL and thymoma, making
the right diagnosis is essential to avoid wrongly
exposing a patient to intensive chemotherapy in the
case of an erroneous T-LBL diagnosis. This may
eventually require multimodal diagnostic approaches
using histological, immunohistochemical (pan-
cytokeratin, p63/p40/pax8 expression, and/or other
keratin meshworks in thymoma, for instance), and
molecular testing. In this study, we propose a
new diagnostic tool based on DNA methylation anal-
ysis as an additional reliable biomarker for the differ-
ential diagnosis between T-LBL and T-cell-rich
thymoma.

Materials and methods

Samples
The study was performed in accordance with the
Declaration of Helsinki and local laws and was approved
by the steering and ethics committee of the RYTHMIC
network.

We collected tumoral tissues from 54 T-LBLs and
48 TdT+ T-cell-rich thymomas and isolated genomic
DNA according to standard procedures at diagnosis,
either from fresh/cryopreserved tissues or formalin-
fixed, paraffin-embedded (FFPE) samples. For FFPE
samples, DNA was extracted from five to ten FFPE
tissue slices using a Maxwell® RSC DNA FFPE Kit
according to the manufacturer’s instructions (Promega,
Madison, WI, USA).

Pathology review
All thymic epithelial tumors were collected and
reviewed by pathologists from the French RYTHMIC
network, dedicated to the management of patients with
thymic epithelial tumors [9].

Global DNA methylation analysis
DNA methylation using Infinium MethylationEPIC
BeadChip (Illumina, San Diego, CA, USA) for a series
of seven thymomas and 24 T-LBLs was performed
following the manufacturer’s protocol.

Identification of differentially methylated
regions (DMRs)
We identified DMRs fromMeDIP-array and EPIC-array
methylation data (supplementary material, Tables S1
and S2). To identify DMRs between distinct conditions,
the lmFit function from the ‘limma’ R package was
employed to fit the methylation data to a linear model.
Subsequently, the moderated t-statistics method, incor-
porating an empirical Bayes approach, was applied to
assess differential methylation. The adjusted p values
were calculated using the empirical Bayes method, and
only loci with adjusted p values less than 0.05 were
retained as significant. Principal component analysis
(PCA) was performed using the prcomp function in
R (R Foundation for Statistical Computing, Vienna,
Austria) with data scaling. The resulting PCA scores
were extracted, providing a reduced dimensional repre-
sentation of the methylation profiles. Scatter plots were
generated with PCA scores on the first two principal
components.

Machine learning model building
From the EPIC-array dataset, methylation data for ZIC1,
TSHZ2, CDC42BPB, C10orf53,MACROD2, and RBM24
were selected as features for the model building. The
PyCaret library in Python (Python Software Foundation,
Wilmington, DE, USA) was used for the predictive
model development to classify samples as normal or
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leukemic. Various machine learning algorithms were
trained and compared using the training set (not shown),
and the best-performing algorithm, Extra Trees Regressor
(n_jobs = �1, random_state = 889), was selected for
further optimization. The Extra Trees Regressor
(n_jobs = �1, random_state = 889) model was fine-
tuned using hyperparameter optimization to enhance
its predictive performance. The model was optimized
based on mean absolute error (MAE). The perfor-
mance of the tuned Extra Trees Regressor model
was evaluated on the testing set. Additionally, in-
terpretation of the model was performed using
SHAP (SHapley Additive exPlanations) values to
understand the impact of features on model predic-
tions. The effect of the number of features selected
on the model performance was evaluated using an
optimal prediction with six features (supplementary
material, Figure S1). Features’ importance (weight)
in the prediction was also evaluated (supplementary
material, Figure S2).

Validation of the DNA methylation signature
Direct targeted DNA methylation levels were analyzed
by methylation-specific multiplex ligation-dependent
probe amplification (MS-MLPA) using custom probes
located in close proximity to DMRs identified in the
EPIC-array dataset (<500 bp) (supplementary material,
Table S3) and SALSA MLPA P200 Reference-1
Probemix and EK1 Reagent Kits from MRC Holland
(Amsterdam, The Netherlands), following the manufac-
turer’s recommendations. Data were analyzed using
Coffalyser software (MRC Holland).

TRG and TRD clonality analysis
TRD and TRG clonality was assessed either by one-step
next-generation sequencing (NGS) as previously
described [10] or/and by multiplex PCR according to
EuroClonality protocols [11,12]. NGS clonality data
were analyzed and visualized using the Vidjil
Platform [13].

Results

Previously, we studied the gene promoters’ global DNA
methylation in a series of 17 T-LBLs, one lymphocyte-
rich thymoma (B1 subtype), and three normal thymi
using MeDIP arrays (see supplementary material,
Table S4 for clinical characteristics). Unsupervised hier-
archical clustering identified two main clusters associ-
ated with distinct methylation profiles. All the T-LBL
samples (n = 17) clustered in one group, whereas the
thymoma cases and the three normal thymic tissues
clustered in a second group [14]. Based on this observation,
we decided to further explore the differential methyl-
ation profiles between T-LBL and thymoma in order to
epigenetically characterize thymic T-lymphoid popul-
ations in the T-LBLs, T-lymphocyte-rich thymoma,

and normal thymic tissues, and to distinguish between
T-LBL and non-T-LBL. For this purpose, we
performed ‘state-of-the-art’ global methylation profil-
ing using EPIC arrays in an independent series of
24 T-LBLs and seven thymomas (n = 2 AB, n = 2
B1, and n = 3 B2 subtypes). Clinical characteristics
are presented in supplementary material, Table S5.
Unsupervised PCA analysis using MeDIP-array or
EPIC-array datasets showed clustering of T-LBL sam-
ples in a subgroup, and with thymoma and normal
thymic samples in a distinct subgroup (Figure 1B).
We then identified differentially methylated regions
(DMRs) (padj < 0.05) within the two datasets between
T-LBL and thymomas and thymus; 54,837 and 13,683
DMRs including 5,214 and 2,705 unique genes were
found in the MeDIP-array and EPIC-array datasets,
respectively. A significant overlap of 862 differen-
tially methylated genes between the two datasets was
observed (Figure 1C,D,E and supplementary material,
Tables S1 and S2). Considering the top 100 of the
most differentially methylated regions, we identified
nine overlapping genes, namely MACROD2 (mono-ADP
ribosylhydrolase 2), CDC42BPB (CDC42 binding protein
kinase beta), KLHL34 (kelch-like family member 34),
TSHZ2 (teashirt zinc finger homeobox 2), RBM24
(RNA binding motif protein 24), ZIC1 (Zic family
member 1), C10orf53 (chromosome 10 open reading
frame 53), ZIC3 (Zic family member 3), and CPEB1
(cytoplasmic polyadenylation element binding protein
1) (Figure 1F).
In order to explore the DNA methylation profiles in

larger series of T-LBL and thymoma, we then defined a
classifier including six among these most differentially
methylated gene promoters: ZIC1, TSHZ2, CDC42BPB,
C10orf53, RBM24, and MACROD2 (Figure 2A). An
MS-MLPA assay was designed to explore the methyla-
tion status using this six-gene classifier. ZIC3 and
KLHL34, located on chromosome X, were excluded, as
well asCPEB1 for technical considerations. Representative
MS-MLPA profiles for thymus, thymoma, and T-LBL
are shown in Figure 2B. We first tested the MS-MLPA
panel in a series of three normal thymi, one TdT+

lymphocyte-rich thymoma, and seven T-LBLs from the
MeDIP-array series and the seven thymomas and 24
T-LBLs from the EPIC-array series (Figure 2C,D), and
this confirmed the hypermethylated profile of T-LBL
cases as compared with thymoma cases. We then
assessed the MS-MLPA panel in an additional series of
41 lymphocyte-rich thymomas (n = 21 AB, 9 B1, and
11 B2 subtypes) and 30 T-LBLs. The epidemiological
and biological characteristics of the entire series of
thymoma and T-LBL cases analyzed by MS-MLPA are
presented in Table 1. As expected, thymoma patients
were significantly older than T-LBL patients (median
age 61.2 versus 30.8 years, respectively), and T-LBL
affected male patients more frequently compared with
the patients with thymoma (sex ratio 3.5 versus 0.92.
respectively). We also studied the clonal rearrangements
of the TRG and TRD loci. As expected, no thymoma
case demonstrated clonal TRG, whereas 9/54 T-LBLs
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Figure 1. Global methylation analysis in T-LBL, thymoma, and thymus. (A) Unsupervised PCA and (C) supervised PCA using DMRs (padj < 0.05)
of MeDIP-array data for 17 T-LBLs, one lymphocyte-rich thymoma, and three normal thymi. (B) Supervised PCA and (D) unsupervised PCA
using DMRs (padj < 0.05) of EPIC-array data for 24 T-LBL and seven thymoma cases. (E) Venn diagram illustrating overlap between DMRs
identified in the MeDIP-array dataset (1st dataset) and EPIC-array dataset (2nd dataset). (F) DMR overlap within the top 100 most
differentially methylated genes in the two datasets.

Figure 2. MS-MLPA targeted promoter methylation analysis development to distinguish between T-LBL and T-lymphocyte-rich thymoma.
(A) List of the six-gene promoter classifier allowing methylation status prediction with the corresponding most differentially methylated
probe in the EPIC-array dataset and significance (adjusted p value). (B) Representative ratio charts of methylation-specific multiplex ligation-
dependent probe amplification (MS-MLPA) analysis for one normal thymus, one T-LBL, and one thymoma. The top panels refer to the MLPA
(undigested) reference panel and the bottom panel is the MS-MLPA (digested with HhaI restriction enzyme) panel. (C) The methylation ratio
of each gene promoter was assessed by MS-MLPA for three thymus, eight thymoma, and 31 T-LBL samples from the MeDIP-array and EPIC-
array series. (D) Heat map illustrating the methylation ratios by MS-MLPA for the thymus, the thymoma, and the T-LBL subgroups (median).
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(16.7%) did not display clonal TRG clonal rearrangement.
Of note, a vast majority (8/9) of polyclonal TRG T-LBLs
also demonstrated non-clonal TRD rearrangement. Overall,
8/54 T-LBLs (14.8%) had germline TRG and TRD
rearrangements. Representative clonality profiles for
polyclonal, clonal T-LBLs, and polyclonal thymomas
are shown in Figure 3. These results highlight that
even if TRG clonality could be very helpful in the
diagnostic process, it does not constitute a perfect diag-
nostic biomarker. Regarding DNA methylation status
and considering the entire series, methylation ratios were
significantly different between thymoma and T-LBL for
each gene promoter of the classifier despite some
overlap for ZIC1, TSHZ2, CDC42BPB, C10orf53, and
RBM24. Interestingly, no overlap was observed for
MACROD2 (Figure 4A,B). Therefore, MACROD2
methylation status was the most reliable biomarker
for distinguishing between thymoma and T-LBL.
Considering the average methylation ratio of the six gene
promoters, we confirmed a global significant differential

methylation between thymomas (hypomethylated) and
T-LBLs (hypermethylated) (methylation ratio median
0.03 versus 0.66, respectively; p < 0.0001) (Figure 4C).
We verified the reliability of the assay on DNA isolated
from FFPE tissues, as DNA could be of lower quality and
hinder molecular analysis. For two thymoma (sample
pairs #1 and #2) and two T-LBL (sample pairs #3 and
#4) cases with both frozen and FFPE tissues available,
similar methylation profiles were obtained in both DNA
samples (Figure 4D). In addition, we recently reported
methylome data in a large series of adult T-ALLs
(n = 143) using Illumina Infinium methylation EPIC
arrays [15]. Similar results were observed in T-ALL sam-
ples displaying significantly hypermethylated promoters
for the six-gene classifier compared with normal thymi
(n = 12), confirming the biological relevance of the
aberrant methylation observed in T-LBL (supplemen-
tary material, Figure S3).
Finally, in order to build a robust prediction model

to distinguish between T-LBL and lymphocyte-rich
thymoma, we adopted a machine learning strategy
(Figure 5A). The most differentially methylated probe
in the EPIC-array dataset for each gene of the six-gene
classifier was selected for the model building (training
set). Various machine learning algorithms were
trained and compared using the training set, and the
best-performing algorithm, Extra Trees Regressor,
was selected for further optimization (see the
Materials and methods section). Each feature weight
in the prediction was evaluated and a cumulative score
taking into account the relative weight of each feature
was calculated; a prediction score below 0.4 was

Table 1. Epidemiological and biological features of the global series
of studied T-LBLs and thymomas (EPIC array and/or MS-MLPA).

T-LBL Thymoma p value*

n= 54 48
Age median (years),
(min–max)

30.8 (0.1–71.1) 61.2 (26.5–87.1) <0.0001

Sex ratio (M/F) 3.5 (42/12) 0.92 (23/25) 0.0021
Clonal TRG 45/54 (83.3%) 0/46 (0%) <0.0001
Clonal TRD 26/54 (48.1%) 0/46 (0%) <0.0001
Germline TRG and TRD 8/54 (14.8%) 46/46 (100%) <0.0001

*χ2 or Mann–Whitney tests were used where appropriate.

Figure 3. TRG and TRD clonality analysis by NGS. (A–F) Representative TRG and TRD clonotype distributions for two polyclonal T-LBL (A and B),
two clonal T-LBL (C and D), and two thymoma samples (E and F). Red and yellow bars represent major TRG and TRD clonotypes, respectively.
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considered predictive of a thymoma diagnosis and a
score equal to or above 0.4 predictive of a T-LBL
diagnosis (Figure 5B). After testing on the MeDIP-
array dataset, we applied the model to the MS-MLPA
cohort, which clearly and robustly separated
thymomas and T-LBLs (Figure 5C).

Discussion

In this study, we confirmed a certain overlap regarding
epidemiological and biological features (age, sex, TRG
status) between thymoma and T-LBL, underpinning the
need for additional biomarkers. Indeed, in this series,

Figure 4. Methylation status by MS-MLPA in lymphocyte-rich thymoma and T-LBL validation series. (A) Methylation ratio for each gene
promoter assessed by MS-MLPA in T-LBL (n = 54), thymoma (n = 48), and thymus samples (n = 8). (B) Heat map illustrating the methylation
ratios by MS-MLPA for the thymus, thymoma, and T-LBL samples. (C) Average methylation ratio (average methylation of the six-gene panel) for
the T-LBL, thymoma, and thymus groups. The dotted line depicts the threshold of 0.1. (D) Heat map illustrating the methylation profiles by
MS-MLPA for frozen and FFPE samples for two T-LBL and two thymoma sample pairs. ****p < 0.0001 (Mann–Whitney non-parametric test).

Figure 5.Machine learning prediction model. (A) Flowchart of the machine learning prediction model design. (B) Cumulative score taking into
account the relative weight of each feature (red) and mathematical formula to calculate the prediction score. (C) Prediction scores for T-LBL
(n = 54) and thymoma cases (n = 48).
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about 14% of T-LBL cases displayed neither TRG nor
TRD clonal rearrangement, suggesting a very immature
maturation arrest stage. Furthermore, it has been
suggested that LMO2 expression could be a specific
marker to distinguish between T-LBL/T-ALL and
thymomas [16]. Whereas LMO2 expression is frequent
in T-ALL and is involved in leukemogenesis, it is not
observed in 100% of T-ALLs/T-LBLs but rather in
50–80% of cases [16–18] and never in thymomas.
Therefore, even if LMO2 expression could be an addi-
tional argument in the differential diagnosis process, it
would not be a perfect biomarker because of low sensi-
tivity. In this context, we propose a new prediction
model based on DNA methylation analysis as an addi-
tional reliable biomarker and diagnostic tool that is both
highly specific and highly sensitive for the differential
diagnosis between T-LBL and T-cell-rich thymoma.
While gene expression is labile and may reflect an alter-
able cellular state, DNAmethylation is robustly stable in
patient samples [19]. Moreover, it critically retains cell-
of-origin and substantial leukemogenic signatures,
reinforcing the evaluation of the methylome as a power-
ful diagnostic and classifier tool [15]. MS-MLPA offers
the advantages of being feasible and adapted for routine
activity, since it requires only low amounts of DNA
(50 ng), extracted from FFPE or fresh samples and with-
out any specific DNA treatment. Lymphoid populations
from T-LBL demonstrate a signature of aberrant DNA
hypermethylation within gene promoters in line with the
general concept of aberrant methylation as a hallmark of
cancer. Conversely, lymphoid populations from TdT+

T-cell-rich thymoma show a methylation pattern similar
to that of normal thymic tissues, confirming their non-
malignant feature in this pathology.

Interestingly, these six most differentially methylated
genes are cancer-related. For instance, ZIC1 was
described as a tumor suppressor gene, and its inhibition
and epigenetic silencing were associated with chronic
myelogenous leukemia [20], anal cancer severity [21],
high-risk pediatric rhabdomyosarcoma [22], non-
invasive endometrial cancer detection [23], invasive
breast cancer [24], cervical cancer detection [25], gastric
cancer metastasis [26], glioma cell growth [27], high-
risk hepatocellular carcinoma [28], and distinct thyroid
cancer subtypes [29]. TSHZ2 inhibition and epigenetic
silencing were associated with mammary tumors [30], a
poorer prognosis in lung adenocarcinoma [31], and
triple-negative breast cancer [32]. RBM24 is a splicing
regulator. This gene functions as a tumor suppressor
gene in liver cancer cells [33] and nasopharyngeal
carcinoma [34], and is found to be repressed in colorec-
tal tumors [35]. Somatic variants of C10orf53 have been
described in acute myeloid leukemia (AML) and
meningioma [36,37]. MACROD2 seems to be the most
discriminating between thymoma and T-LBL. This gene
is frequently affected by structural variations (SVs) and
is less expressed in hepatocellular carcinoma, promoting
cancer cell growth and metastasis [38]. In this latter
paper, MACROD2 protein expression was studied in
tumoral tissues using immunohistochemistry (IHC).

In future investigations, it would be interesting to study
whether MACROD2 expression assessed using IHC
could also differentiate between thymoma and T-LBL.
MACROD2 deletions were also involved in chromo-
some instability in colorectal cancer [39] and in gastric
cancer [40]. Interestingly, inactivating mutations and
structural variation of MACROD2 were also reported in
relapsing pediatric B-cell precursor (BCP)-ALL [41],
suggesting a role in leukemogenesis. In conclusion, this
‘six-gene methylation biomarker’ could be a valuable
adjunct to the diagnostic toolbox and help to better
distinguish between T-LBL and T-cell-rich thymoma.
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